问题描述

给定二叉搜索树(BST)的根节点 root 和要插入树中的值 value ,将值插入二叉搜索树。 返回插入后二叉搜索树的根节点。 输入数据 保证 ,新值和原始二叉搜索树中的任意节点值都不同。

注意,可能存在多种有效的插入方式,只要树在插入后仍保持为二叉搜索树即可。 你可以返回 任意有效的结果 。

示例 1:

输入:root = [4,2,7,1,3], val = 5
输出:[4,2,7,1,3,5]
解释:另一个满足题目要求可以通过的树是:

示例 2:

输入:root = [40,20,60,10,30,50,70], val = 25
输出:[40,20,60,10,30,50,70,null,null,25]

示例 3:

输入:root = [4,2,7,1,3,null,null,null,null,null,null], val = 5
输出:[4,2,7,1,3,5]

提示:

  • 树中的节点数将在 [0, 104]的范围内。
  • -108 <= Node.val <= 108
  • 所有值 Node.val 是 独一无二 的。
  • -108 <= val <= 108
  • 保证 val 在原始BST中不存在。

核心思路

插入和搜索操作其实差不多。

当将 val\textit{val} 插入到以 root\textit{root} 为根的子树上时,根据 val\textit{val}root.val\textit{root.val} 的大小关系,就可以确定要将 val\textit{val} 插入到哪个子树中。

  • 如果该子树不为空,则问题转化成了将 val\textit{val} 插入到对应子树上。
  • 否则,在此处新建一个以 val\textit{val} 为值的节点,并链接到其父节点 root\textit{root} 上。

code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
class Solution {
public:
TreeNode* insertIntoBST(TreeNode* root, int val) {
if (root == nullptr) {
return new TreeNode(val);
}
TreeNode* pos = root;
while (pos != nullptr) {
if (val < pos->val) {
if (pos->left == nullptr) {
pos->left = new TreeNode(val);
break;
} else {
pos = pos->left;
}
} else {
if (pos->right == nullptr) {
pos->right = new TreeNode(val);
break;
} else {
pos = pos->right;
}
}
}
return root;
}
};
  • 时间复杂度:O(N)O(N),其中 N 为树中节点的数目。最坏情况下,我们需要将值插入到树的最深的叶子结点上,而叶子节点最深为 O(N)O(N)

  • 空间复杂度:O(1)O(1)。我们只使用了常数大小的空间。