问题描述
给定一个不含重复数字的数组 nums
,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。
示例 1:
输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
示例 2:
输入:nums = [0,1]
输出:[[0,1],[1,0]]
示例 3:
输入:nums = [1]
输出:[[1]]
提示:
1 <= nums.length <= 6
-10 <= nums[i] <= 10
nums
中的所有整数 互不相同
回溯
核心思路
首先排列是有序的,也就是说 [1,2] 和 [2,1] 是两个集合,这和之前分析的子集以及组合所不同的地方。
可以看出元素1在[1,2]中已经使用过了,但是在[2,1]中还要在使用一次1,所以处理排列问题就不用使用startIndex了。
但排列问题需要一个used数组,标记已经选择的元素。
code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
| class Solution { public: vector<vector<int>> result; vector<int> path; void backtracking (vector<int>& nums, vector<bool>& used) { if (path.size() == nums.size()) { result.push_back(path); return; } for (int i = 0; i < nums.size(); i++) { if (used[i] == true) continue; used[i] = true; path.push_back(nums[i]); backtracking(nums, used); path.pop_back(); used[i] = false; } } vector<vector<int>> permute(vector<int>& nums) { result.clear(); path.clear(); vector<bool> used(nums.size(), false); backtracking(nums, used); return result; } };
|
-
时间复杂度:O(n×n!),其中 n 为序列的长度。
算法的复杂度首先受 backtrack 的调用次数制约,backtrack 的调用次数为 ∑k=1nP(n,k) 次,其中 P(n,k)=(n−k)!n!=n(n−1)…(n−k+1),该式被称作 n 的 k - 排列,或者部分排列。而 ∑k=1nP(n,k)=n!+1!n!+2!n!+3!n!+…+(n−1)!n!<2n!+2n!+22n!+2n−2n!<3n!
这说明 backtrack 的调用次数是 O(n!) 的。
而对于 backtrack 调用的每个叶结点(共 n! 个),我们需要将当前答案使用 O(n) 的时间复制到答案数组中,相乘得时间复杂度为 O(n×n!)。
因此时间复杂度为 O(n×n!)。
-
空间复杂度:O(n),其中 n 为序列的长度。除答案数组以外,递归函数在递归过程中需要为每一层递归函数分配栈空间,所以这里需要额外的空间且该空间取决于递归的深度,这里可知递归调用深度为 O(n)。