leetcode 1005.K次取反后最大化的数组和
问题描述
给你一个整数数组 nums
和一个整数 k
,按以下方法修改该数组:
- 选择某个下标
i
并将nums[i]
替换为-nums[i]
。
重复这个过程恰好 k
次。可以多次选择同一个下标 i
。
以这种方式修改数组后,返回数组 可能的最大和 。
示例 1:
输入:nums = [4,2,3], k = 1
输出:5
解释:选择下标 1 ,nums 变为 [4,-2,3] 。
示例 2:
输入:nums = [3,-1,0,2], k = 3
输出:6
解释:选择下标 (1, 2, 2) ,nums 变为 [3,1,0,2] 。
示例 3:
输入:nums = [2,-3,-1,5,-4], k = 2
输出:13
解释:选择下标 (1, 4) ,nums 变为 [2,3,-1,5,4] 。
提示:
1 <= nums.length <= 104
-100 <= nums[i] <= 100
1 <= k <= 104
核心思路
核心思路
由于我们希望数组的和尽可能大,因此除非万不得已,我们应当总是修改负数,并且优先修改值最小的负数。因为将负数 修改成 会使得数组的和增加 ,所以这样的贪心操作是最优的。
当给定的 小于等于数组中负数的个数时,我们按照上述方法从小到大依次修改每一个负数即可。但如果 的值较大,那么我们不得不去修改非负数(即正数或者 0)了。由于修改 0 对数组的和不会有影响,而修改正数会使得数组的和减小,因此:
-
如果数组中存在 0,那么我们可以对它进行多次修改,直到把剩余的修改次数用完;
-
如果数组中不存在 0 并且剩余的修改次数是偶数,由于对同一个数修改两次等价于不进行修改,因此我们也可以在不减小数组的和的前提下,把修改次数用完;
-
如果数组中不存在 0 并且剩余的修改次数是奇数,那么我们必然需要使用单独的一次修改将一个正数变为负数(剩余的修改次数为偶数,就不会减小数组的和)。为了使得数组的和尽可能大,我们就选择那个最小的正数。
需要注意的是,在之前将负数修改为正数的过程中,可能出现了(相较于原始数组中最小的正数)更小的正数,这一点不能忽略。
实现要点
为了实现上面的算法,我们可以对数组进行升序排序,首先依次遍历每一个负数(将负数修改为正数),再遍历所有的数(将 0 或最小的正数进行修改)。
然而注意到本题中数组元素的范围为 [-100, 100],因此我们可以使用计数数组(桶)或者哈希表,直接统计每个元素出现的次数,再升序遍历元素的范围,这样就省去了排序需要的时间。
code
1 | class Solution { |
-
时间复杂度:,其中 n 是数组 的长度, 是数组 中元素的范围,本题中 。
我们需要 的时间使用桶或哈希表统计每个元素出现的次数,随后需要 的时间对元素进行操作。
-
空间复杂度:,即为桶或哈希表需要使用的空间。