leetcode 225.用队列实现栈
问题描述
请你仅使用两个队列实现一个后入先出(LIFO)的栈,并支持普通栈的全部四种操作(push
、top
、pop
和 empty
)。
实现 MyStack
类:
void push(int x)
将元素 x 压入栈顶。int pop()
移除并返回栈顶元素。int top()
返回栈顶元素。boolean empty()
如果栈是空的,返回true
;否则,返回false
。
注意:
- 你只能使用队列的标准操作 —— 也就是
push to back
、peek/pop from front
、size
和is empty
这些操作。 - 你所使用的语言也许不支持队列。 你可以使用 list (列表)或者 deque(双端队列)来模拟一个队列 , 只要是标准的队列操作即可。
示例:
输入:
[“MyStack”, “push”, “push”, “top”, “pop”, “empty”]
[[], [1], [2], [], [], []]
输出:
[null, null, null, 2, 2, false]
解释:
MyStack myStack = new MyStack();
myStack.push(1);
myStack.push(2);
myStack.top(); // 返回 2
myStack.pop(); // 返回 2
myStack.empty(); // 返回 False
提示:
1 <= x <= 9
- 最多调用
100
次push
、pop
、top
和empty
- 每次调用
pop
和top
都保证栈不为空
进阶:你能否仅用一个队列来实现栈。
核心思路
入栈操作时,首先获得入栈前的元素个数 n,然后将元素入队到队列,再将队列中的前 n 个元素(即除了新入栈的元素之外的全部元素)依次出队并入队到队列,此时队列的前端的元素即为新入栈的元素,且队列的前端和后端分别对应栈顶和栈底。
由于每次入栈操作都确保队列的前端元素为栈顶元素,因此出栈操作和获得栈顶元素操作都可以简单实现。出栈操作只需要移除队列的前端元素并返回即可,获得栈顶元素操作只需要获得队列的前端元素并返回即可(不移除元素)。
由于队列用于存储栈内的元素,判断栈是否为空时,只需要判断队列是否为空即可。
code
1 | class MyStack { |
-
时间复杂度:入栈操作 ,其余操作都是 ,其中 n 是栈内的元素个数。
入栈操作需要将队列中的 n 个元素出队,并入队 n+1 个元素到队列,共有 2n+1 次操作,每次出队和入队操作的时间复杂度都是 ,因此入栈操作的时间复杂度是 。
出栈操作对应将队列的前端元素出队,时间复杂度是 。
获得栈顶元素操作对应获得队列的前端元素,时间复杂度是 。
判断栈是否为空操作只需要判断队列是否为空,时间复杂度是 。 -
空间复杂度:,其中 n 是栈内的元素个数。需要使用一个队列存储栈内的元素。